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Abstract. Different pulse shapes realizing photo isomerization via laser driven tunnelling or vibrational
transitions are studied here. Particular attention is paid to the investigation of their robustness with respect
to the influence of dissipative processes introduced by the interaction with an environment. An iterative
scheme for propagation of the reduced density matrix in the path integral representation is used to take into
account arbitrary system-environment coupling strengths as well as the effect of non-Markovian dynamics.

PACS. 31.70.Hq Time-dependent phenomena: excitation and relaxation processes, and reaction rates –
82.40.Js Fast and ultrafast reactions – 82.30.Qt Isomerization and rearrangement

1 Introduction

The possibility to influence the reaction pathway and con-
sequently the reaction yield by means of laser fields has
attracted considerable attention recently (for reviews see,
e.g., Refs. [1–3]). In particular laser driven isomerization
has been on focus in this respect, not at least because
of its possible application for switches in molecular elec-
tronics devices [4]. Especially, isomerization reactions ac-
companying intramolecular hydrogen transfer (HT) are of
outstanding importance in many chemical and biological
processes. (For recent reviews, see [5].) Besides more tradi-
tional aspects, HT isomerization reactions can take place
on very short time scales making them relevant for fem-
tochemistry studies (see, e.g. [6]).

HT in the electronic ground state is typically charac-
terised by a reaction surface showing two minima corre-
sponding to the reactant and the product species which
are separated by a reaction barrier. Starting with this sys-
tem prepared in the reactant state laser induced switch-
ing can be realized straightforwardly using a two-pulse
pump-dump scheme as outlined, e.g., in [7] and applied
to HT in [8]. In contrast to the pump-dump approach
where the reaction is driven over the barrier, a tunnelling
scheme has been proposed from optimal control theory [9].
Here the reaction is driven through the barrier, i.e. this ap-
proach will be appropriate for systems having a rather low
barrier. In short, starting with a wave packet localised in
the reactant well a constant field is switched-on in a way
that would lead to perfectly delocalized tunnelling states
in the detuned potential. Choosing the switching time in
the range of a few hundred femtoseconds a coherent su-
perposition of these eigenstates of the molecule plus field
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Hamiltonian is created whose dynamics during the follow-
ing constant field plateau phase results in tunnelling be-
tween reactant and product potential minima. If the field
is switched off after about the tunnelling time the wave
packet is stabilised in the product well. The main advan-
tages compared to the pump-dump scheme are: first, this
approach does not require the rather high field intensi-
ties necessary for above barrier driving, and second, there
is quite some flexibility concerning the exact form of the
laser pulse as discussed in [9]. Since the tunnelling time
is dictated by the shape and in particular the height of
the barrier this mechanism does not allow for ultrafast
switching as soon as the latter increases. In reference [10]
it was shown that in this case a two pulse sequence is
more appropriate. First, a pump-pulse prepares a vibra-
tionally excited state in the reactant potential well. This
state should be chosen such that there is some nearly de-
generate state available on the product side. Starting from
this excited state a tunnel pulse is then used to transfer
the wave packet to the product well.

The pump-dump as well as the tunnelling scheme dis-
cussed so far included only a few (two in Ref. [8] and one in
Refs. [9,10]) degrees of freedom. If one wishes to abandon
such a reduced description and to include the interaction
of these HT coordinates with other intramolecular degrees
of freedom as well as with a surrounding medium advan-
tage can be taken of density matrix theory [11]. (For an
application of density matrix theory to HT see also [12,
13].) In reference [10] it was shown how multilevel Red-
field theory [14] can be applied to study the robustness
of tunnelling control schemes with respect to energy and
phase relaxation processes. This approach of course im-
plies Markovian dynamics as well as a coupling between
the HT coordinate and the bath which is rather weak.
Further, a straightforward application of Redfield theory
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usually neglects the influence of the field on the relax-
ation rates. For a monochromatic field the latter restric-
tion can be avoided, e.g. by using a representation of the
reduced density matrix (RDM) in terms of Floquet states
[15]. (For a review see also [16].) One alternative to the
weak coupling treatment of the system-environment in-
teraction has been given in reference [17] where Franck-
Condon weighted tunnel coupling matrix elements ob-
tained after canonical transformation of the total Hamilto-
nian have been used as a small parameter. Another alter-
native which includes arbitrary large system-environment
coupling within a non-Markovian description of the sys-
tem dynamics is given by the real-time path integral ap-
proach (see, e.g., [16,18]). It was only recently that effi-
cient numerical schemes were developed for propagating
the density matrix via path integrals [19–24]. Among the
various applications have been, e.g., the study of the real-
time dynamics in multi-mode vibronic coupling systems
[22], of the resonant electron-molecule scattering [23], and
of curve-crossing problems [24,25].

In cases where the energy spectrum of the double mini-
mum potential allows for a separation of the lowest tunnel
doublet from higher excited states, the dissipative HT dy-
namics can be described by the spin-boson model [18]. The
dynamics in this two-level model system driven by shaped,
pulsed or pure monochromatic laser light has been stud-
ied extensively during the last years. (For a recent review
see [16].) In particular, it was shown that monochromatic
light can lead to coherent destruction of tunnelling, i.e.
preserve an initially localised non-eigenstate of the iso-
lated system [26]. On the other hand, an initially delo-
calized state can become localised by means of a suitable
chosen field [27]. The influence of dissipation on the popu-
lation transfer under monochromatic driving was studied
in detail in references [15,17,28,29], for instance.

In the present contribution we investigate laser pulses
of different shapes which are capable of driving HT at
high yield in the absence of dissipation. Emphasis is paid
to the investigation of their ability to compete with relax-
ation processes in the presence of dissipation. The latter
is described using a real-time path integral representation
of the RDM. The remaining text is organised as follows:
We first introduce the model system in Section 2. The
potential for the reaction coordinate is chosen to mimic
hydrogen transfer in thioacetylacetone (TAA) for which
high-level ab initio calculations have been performed [30].
In Section 3 a brief outline of the numerical procedure for
propagation of the RDM using the iterative tensor prop-
agation scheme developed by N. Makri and co-workers is
given [19,20,31]. The numerical simulations are discussed
in Section 4 and the paper is summarised in Section 5.

2 The model

When investigating controlled photo isomerization it is de-
sirable to consider intramolecular HT in molecules having
energetically non-equivalent reactant and product configu-
rations. This allows for a clear distinction between initial
and final states when following the reaction, e.g., using
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Fig. 1. One dimensional potential curve, V (x) for isomer-
ization in TAA. The parameters entering equation (1) are:
k1=5.95 mD/A k2 =4.31 mD/A, x0,1 = −0.38 A , x0,2 =
0.64A , ∆1=0, ∆2=0.0975 eV, kc = 4.24 eV, and xc = 0.152
A. The barrier height is 0.214 eV and the asymmetry is 0.07
eV. For details see reference [30]. The two lowest eigenfunctions
are shown with a vertical offset corresponding to the respective
eigenenergies.

time resolved pump-probe spectroscopy. While in refer-
ences [8–10] general non-symmetrical substituted malon-
aldehyde has been taken as a reference system the present
simulations will be done for a specific molecule, TAA. A
detailed account for the quantum chemical calculations
will be given in reference [30]. In short, MP2 calculations
using a 6− 31 + G(d,p) basis set have been performed to
locate the stationary points as well as the transition state
configuration on the potential energy surface. Using these
data the empirical one dimensional potential function

V (x) =
1
2

[
V (1)

osc (x) + V (2)
osc (x)

−
√

(V (1)
osc (x) + V

(2)
osc )2 + 4K2(x)

]
(1)

was fitted to reproduce the energetics at the calculated
points as well as the different local vibrations on the re-
actant (O–H) and product (S–H) side. In equation (1),
V

(i)
osc(x) = ki(x−x0,i)2/2+∆i, are local diabatic potentials

which are coupled via the function K(x) = kce
−(x−xc)2

.
The adiabatic potential, V (x), is shown in Figure 1 to-
gether with the wave functions of the two lowest eigen-
states which are rather localised and energetically be-
low the reaction barrier (for parameters see figure cap-
tion). The dipole moment was fitted to a linear func-
tion, d(x), interpolating between the values 4.27 D and
3.75 D obtained for the two stationary points [30]. Taking
this information together we are able to write down the
Hamiltonian of the reactive system coupled to the laser
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field:

Hs(t) =
p2

2m
+ V (x)− d(x)E(t) . (2)

For simplicity we will assume that the field is always di-
rected along the systems dipole moment. In order to ac-
count for the environmental degrees of freedom we sup-
plement equation (2) with a coupling term which reads

Hs−e =
∑
j

Pj
2Mj

+
1
2
MjΩ

2
j

(
Qj −

f(x)
MjΩ2

j

)2

, (3)

with Mj and Ωj being the mass and the frequency of the
jth oscillator, respectively. {Qj} and {Pj} are the oscil-
lator coordinates and conjugate momenta. For the cou-
pling function we will use f(x) = cjx for simplicity. Equa-
tions (2) and (3) have the form of the generic system-
environment Hamiltonian which has been extensively used
to study condensed phase dynamics. (See, e.g., [16,18,19,
21].) Within this system-bath model the influence of the
bath is characterised by its spectral density, J (ω), which
reads

J (ω) =
π

2

∑
j

c2j
MjΩj

δ(ω −Ωj) . (4)

In the numerical simulations presented below we have cho-
sen the empirical form

J (ω) =
π

2
ξωe−|ω|/ωc . (5)

This Ohmic type spectral density is commonly used [19,
21] as being typical for a condensed phase environment
characterised by some frequency ωc limiting the range of
modes which can couple to the system. For the present
application we used ωc = 500 cm−1 in order to model
particularly the influence of low frequency vibrations of
the molecular scaffold on the HT dynamics. The coupling
strength is given by the dimensionless Kondo parameter ξ.

3 Density matrix propagation

The time evolution of the HT system under the influence
of the dissipative environment can be obtained from the
RDM. Given the total density operator, ρtot, at some time
t0 the RDM, ρ(tN ), at time tN is obtained from

ρ(x+
N , x

−
N ; tN ) = Tre[〈x+

N |U(tN , t0)ρtot

×U†(tN , t0)|x−N 〉] , (6)

where we used |x±N 〉 to label the coordinate state vectors
and Tre denotes the trace with respect to the environ-
mental degrees of freedom. The practical evaluation of
equation (6) requires discretization of the time axis by
introducing N segments of length ∆t = (t − t0)/N , i.e.
ti = t0 + i∆t (i = 0, . . . , N). The composition law for the
evolution operator then gives U(tN , t0) = U(tN , tN−1) . . .

U(t1, t0), (t = tN ). For the short time propagator,
U(t+∆t, t), a symmetric splitting is performed, i.e. [19]

U(t+∆t, t) = Us−e(t+∆t/2, t)Us(t+∆t, t)
×Us−e(t+∆t/2, t) , (7)

where Us(t′, t) and Us−e(t′, t) denote the time evolution
operator with respect to the Hamiltonian (2) and (3), re-
spectively. As is well known, the error made when using
equation (7) is proportional to the system-environmental
coupling strength [20]. Supplementing this splitting by the
initial condition ρtot = ρ(t0)ρe, where ρe is the equilib-
rium statistical operator for the environment, one obtains
for the RDM [19]

ρ(x+
N , x

−
N ; tN ) =

∫
dx±0 . . . dx

±
N−1ρ(x+

0 , x
−
0 ; t0)

×I(x±0 , . . . , x
±
N ;∆t)

×
∏
j=1,N

K(x±j , x
±
j−1) . (8)

Here

K(x±j , x
±
j−1) = 〈x+

j |Us(tj , tj−1)|x+
j−1〉

×〈x−j−1|U
†(tj−1, tj)|x−j 〉 (9)

is the free system propagator matrix. The effect of the
interaction with the environment is contained in the in-
fluence functional I(x±0 , . . . , x

±
N ;∆t) [32]. While equation

(8) is exact and includes the memory effects which are
neglected in the Redfield treatment, numerical methods
for investigating the long time dynamics using this path
integral expression have been developed only recently [19,
33,31]. In the following we will use the approach put for-
ward by Makri and co-workers (for a recent review, see
also Ref. [20] and for the numerical implementation, cf.
[31]). which rests on the observation that in condensed
phase environments non-local memory effects have only a
finite span. This is reflected in the fact that the so-called
bath response function

α(t) =
1
π

∫ ∞
0

dωJ (ω)[coth(ω/2kBT ) cos(ωt)− i sin(ωt)]

(10)
decays on the time scale of the memory time which reads
in units of the time step τmem = kmem∆t. This allows one
to develop an iterative scheme for propagating an aug-
mented density matrix which can be mapped onto a vector
of length N2kmem

bound , where Nbound is the number of bound
states of the relevant system (for details see [31]). The ac-
tual value of τmem is dictated by the temperature and the
form of the spectral density J (ω). For the Ohmic spectral
density of equation (5), α(t) decays to zero on a rather
short time scale of a few tens of femtoseconds at room
temperature.

The actual numerical evaluation of equation (8) has
been performed using a system-specific discrete variable
representation (DVR) [19,20,31]. In order to accomplish
an efficient calculation of the matrix elements of the sys-
tem propagator we used the time-dependent version of the
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DVR as outlined in reference [34]. In short, one starts with
generating a dynamical orthogonal set of basis functions,
{ϕn(t)} (n = 1, . . . , Nbound), by application of the system
propagator to some initial set {ϕn(t = 0)},

ϕn(t) = Us(t, 0)ϕn(0). (11)

For the {ϕn(0)} we have chosen the set of eigenstates of
the field-free Hamiltonian, {Ψn}, which were obtained us-
ing the Fourier grid method [35]. (Cf. also Fig. 1.) The
propagation was then performed by converting equation
(11) into a set of coupled first order differential equations
which have been solved using an extrapolation method.
Next the position operator was represented in this time-
dependent basis set and the resulting matrix was diago-
nalised to obtain the time-dependent DVR states solving

x|χλ(t)〉 = xλ(t)|χλ(t)〉 . (12)

Using these DVR states the matrix elements of the system
propagator entering equation (8) can be obtained from [34]

〈χλ(t+∆t)|Us(t+∆t, t)|χλ′(t)〉 =
Nbound∑
n=1

Cλn(t+∆t)Cnλ′(t) .

(13)
Here Cnλ(t) = 〈ϕn(t)|χλ(t)〉 is coefficient matrix for
transformation between the time-dependent basis set
{ϕn(t)} and the DVR basis {χλ(t)}.

The numerical results presented in the following sec-
tion have been obtained after carefully adjusting the time
step, ∆t, as well as the memory length, km, until con-
vergence with respect to the populations dynamics was
reached. Depending on the coupling strength parameter
ξ, ∆t was about 1 fs and values of kmem up to 10 have
been used.

4 Discussion of numerical results

In the following we present the population dynamics for
the eigenstates of the field-free isolated molecule, Ψn, for
three different shapes of the driving field. The respec-
tive RDM elements, ρnn(t), are calculated straightfor-
wardly from equation (8) by using a basis set transforma-
tion. The splitting between the two lowest states in the
energy spectrum of the field-free isolated molecule (see
Fig. 1) is much smaller (E2−E1 ≈ 0.023 eV) than the en-
ergy gap separating them from the higher excited states
(E3−E2 ≈ 0.1 eV). Furthermore, for the driving fields em-
ployed subsequently, population of states with quantum
numbers n > 2 is usually smaller than 0.01. Therefore, it
is possible to restrict our model of HT dynamics in TAA to
a two-level system coupled to a dissipative environment.
For the initial condition we have used ρnn(t = 0) = δn1

for simplicity, which corresponds to ρ11(0)− ρ22(0) = 1 in
the following figures. All calculations have been performed
for room temperature. The pulses were chosen in a way
to yield an almost complete population inversion between
the two states for the isolated system. Since these states
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Fig. 2. Driving field (upper panel) and induced population
dynamics (lower panel) of the two eigenstates shown in Fig-
ure 1 for various values of the system environment coupling
parameter ξ. For the field parameters See text.

are rather localised on either the reactant or the product
side (see Fig. 1), population switching corresponds to HT.

In Figure 2 we have plotted the population dynam-
ics of our model system using the simple tunnel pulse
proposed in reference [9]. The pulse is shown in the up-
per panel and includes a 100 fs sin2-type switch-on and
switch-off period and a 200 fs constant field plateau pe-
riod. The plateau field has been determined from the con-
dition Ep = (E1 − E2)/(d11 − d22) [10], where En and
dnn are the eigenvalues and dipole matrix elements of the
isolated system Hamiltonian.

Since the tunnelling mechanism relies on the dynamics
of a coherent superposition of states it is heavily influenced
by relaxation processes introduced by the interaction with
the environment. This can be seen in Figure 2 where we
show the dynamics for three different values of the cou-
pling strength parameter ξ. It is important to remember
at this point, that the present approach includes the effect
of the field on the relaxation. This implies that as long as
the field is switched-on relaxation will drive the system
towards an equilibrium with respect to the instantaneous
molecule plus field Hamiltonian. This equilibrium is not
yet established at t = 300 fs in Figure 2. If the field is
not switched-off the population dynamics shows damped
oscillations (not shown).
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Fig. 3. Same as in Figure 2 but for a half-cycled driving pulse.
For the field parameters see text.

In the moment the field is switched-off the system will
start to relax towards its field-free equilibrium state. This
process takes place on a picosecond time scale for the cho-
sen coupling strengths, partly because h̄ωc is much larger
than E2 − E1. It should be noticed that with the so-
called counter term included in the Hamiltonian, the bar-
rier height does not depend on the system-environment
coupling strength. However, the shape of the multidimen-
sional potential surface of the total system is modified as
can be seen from equation (3) (see, e.g., [36]). Thus the
equilibrium populations of the isolated system eigenstates
in general will depend on the Kondo parameter. (For an
estimate of the effect, see, e.g., [33].)

The pulse form shown in the upper panel of Figure 2
is certainly not easily realized in an actual experiment.
Fortunately, there is some flexibility concerning the pulse
shape as discussed in [9]. In particular so-called half-
cycled pulses can be used to drive HT at comparable high
yield. High-power subpicosecond half-cycled pulses, how-
ever, have been generated recently by Bucksbaum and co-
workers [37]. In Figure 3 we show the population dynamics
for driving the reaction with a half-cycled pulse. The max-
imum switching (about 97 %) has been obtained using a
475 fs sin-shaped pulse having an amplitude which is 1.1
times Ep (see upper panel of Figure 3). Since the pulse
length did not change appreciably, the switching yield in
the presence of dissipation is comparable to the one ob-
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Fig. 4. Same as in Figure 2 but for a sin2 shaped pulse mod-
ulated by some carrier frequency. For the field parameters see
text.

tained in Figure 2. A close inspection of Figures 1 and
2 reveals only a slight modification of the population dy-
namics.

As a third example of a laser field suitable for driv-
ing isomerization reactions we consider the simple form
E(t) = E0 sin2(πt/τ) cos(ωpt) used, e.g. in references [7,
8] in the context of pump-dump control. The possibility
of driven HT by such pulses has been indicated by op-
timal control theory [38]. Choosing E0 = Ep and h̄ωp =
(E2 − E1) requires a pulse duration of τ = 1300 fs in or-
der to achieve close to 100 % switching probability for the
isolated case. The resulting field is shown in the upper
panel of Figure 4. In the lower panel of Figure 4 we plot-
ted the corresponding dynamics of the occupation prob-
abilities for various strength of the system-environment
coupling. Surprisingly the effect of this coupling is not as
disastrous for the switching yield as one might have antic-
ipated for a pulse more than twice as long as in Figures
2 and 3. For the strongest coupling used we still have a
non-equilibrium population of the states at the moment
the field is smoothly switched-off. Again the reason can
be found in the fact that the relaxation takes into account
the influence of the driving field. The situation is, how-
ever, much more complicated than in the previous exam-
ples where the population switched smoothly on the time
scale of the pulse envelope. Superimposing an oscillating
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component on the pulse envelope already yields oscilla-
tions in the dissipation free population dynamics. In this
case the field “shakes” the potential V (x) back and forth;
the net effect being a population inversion at the end of the
pulse. It should be noted that in the present case of a res-
onantly driven two-level system the area theorem applies,
i.e. the pulse shown in Figure 4 is a so-called π-pulse [39].
Turning on the interaction with the environment, laser
driving and relaxation according to the instantaneous po-
tential compete what gives rise to the pronounced pop-
ulation oscillations. Here the net effect is a population
switching whose efficiency depends on the time scales of
the driving field (τ and ωp) and of the relaxation (ξ).

Comparing the population difference obtained by the
different pulses for the same coupling strength, ξ, the
shorter tunnelling pulses are of course more efficient. For
a fixed laser frequency, ωp, the only way to increase the
switching yield of the sin2 pulse for a chosen ξ would be
a decrease of the pulse duration at the expense of an in-
creased field amplitude. Such a pulse, however, would be
spectrally broader and, therefore, might excite higher vi-
brational levels. This can be expected to deteriorate the
selectivity of the HT.

5 Conclusions

In summary a non-Markovian, non-perturbative density
matrix description of laser driven intramolecular hydro-
gen transfer reactions has been presented. The parame-
ters where chosen to model thioacetylacetone for which
high level ab initio data are available [30]. Different pulse
shapes have been judged with respect to their ability to
compete with dissipation processes. The pulse shape flex-
ibility of the tunnelling scheme for reaction control pro-
posed in reference [9] has been shown to persist in the dis-
sipative regime. On the other hand, shaped laser pulses
inducing a vibrational transition between states localised
on different sides of the reaction barrier are more strongly
affected by dissipation processes. State selectivity as well
as the desire for low pulse intensities requires that they
are considerably longer than the tunnel pulses. However,
both control schemes for dissipative hydrogen transfer
can be considered superior to the above barrier pump-
dump method since (i) the pump-dump method requires
higher field strength and longer pulses and (ii) above bar-
rier transfer involves higher excited vibrational states for
which population relaxation is usually fast.

The robustness of the tunnelling scheme with respect
to the interaction with an environment relies not only on
the time scale but also on the fact that the maximum
of the spectral density is well above the level splitting of
the system states. The empirical parameter ωc had been
chosen to model those low frequency vibrational modes of
TAA which can be expected to have the strongest influ-
ence on the hydrogen’s motion (e.g., by varying the O–S
distance). However, since the form of the spectral density
is rather crucial for the dynamics, simulations leading to
experimental realisation of controlled hydrogen transfer
in a specific molecule will require more microscopic input.

Future work will be focussed on this issue for which the
theoretical background has been provided, e.g., by Miller
and co-workers [40].

I gratefully acknowledge stimulating discussions on different
aspects of laser control with N. Došlić, K. Sundermann, J.
Manz (Freie Universität Berlin), and J. Shao (University of
Illinois). This work was financially supported by the Deutsche
Forschungsgemeinschaft (project Ku952/2-1).
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12. O. Brackhagen, O. Kühn, J. Manz, V. May, R. Meyer, J.
Chem. Phys. 100, 9007 (1994).

13. C. Scheurer, P. Saalfrank, J. Chem. Phys. 104, 2869
(1996).

14. A.G. Redfield, Adv. Magn. Res. 1, 1 (1965).
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